Material uses solar energy to remove man-made dye pollutants from water

A novel composite material has been developed by scientists in the Energy Safety Research Institute (ESRI) at Swansea University which shows promise as a catalyst for the degradation of environmentally-harmful synthetic dye pollutants, which are released at a rate of nearly 300,000 tonnes a year into the world's water.

This novel, non-hazardous photocatalytic material effectively removes dye pollutants from water, adsorbing more than 90% of the dye and enhancing the rate of dye breakdown by almost ten times using visible light.

By heating the reaction mixture at high pressures inside a sealed container, the composite is synthesised by growing nanowires of tungsten oxide on the surface of tiny particles of tantalum nitride. Because of the small size of the two material components the composite provides a huge surface area for dye capture.

The material then proceeds to break the dye down into smaller, harmless molecules using the energy provided by sunlight, in a process known as ‘photocatalytic degradation’. Having removed the harmful dyes, the catalyst may simply be filtered from the cleaned water and reused.

While the photocatalytic degradation of dyes has been investigated for several decades, it is only relatively recently that researchers have developed materials capable of absorbing the visible part of the solar spectrum - other materials, such as titanium dioxide, are also able to break down dyes using solar energy, but their efficiency is limited as they only absorb higher energy, ultra-violet light. By making use of a much greater range of the spectrum, materials such as those used by the ESRI team at Swansea University team can remove pollutants at a far superior rate.

Tungsten oxide is considered one of the most promising materials for a range of photocatalytic applications, owing to its high electrical conductivity, chemical stability and surface activity, in addition to its strong light absorbance. As a low band-gap semiconductor, tantalum nitride is red in colour due to its ability to absorb almost the entire spectrum of visible light, and therefore extracts a high amount of energy from sunlight to power the degradation processes.

However, the true potential of the two materials was only realised once they were combined into a single composite. Due to the exchange of electrons between the two materials, the test dye used within the study was broken down by the composite at around double the rate achieved by tantalum nitride on its own, while tungsten oxide alone was shown to be incapable of dye degradation. In contrast to other leading photocatalytic materials, many of which are toxic to both humans and aquatic life, both parts of the composite are classed as non-hazardous materials.

The scientists responsible for the study believe that their research provides just a taster of the material's potential. “Now that we've demonstrated the capabilities of our composite, we aim to not just improve on the material further, but to also begin work on scaling up the synthesis for real-world application.” said Dr Daniel Jones from the ESRI. “We’re also exploring its viability in other areas, such as the photocatalysed splitting of water to generate hydrogen.”

Author
Tom Austin-Morgan

This material is protected by MA Business copyright
See Terms and Conditions.
One-off usage is permitted but bulk copying is not.
For multiple copies contact the sales team.

 

Supporting Information
Do you have any comments about this article?
Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

© MA Business Ltd (a Mark Allen Group Company) 2017