Metamaterials boost sensitivity of MRI machines

An international group of researchers has developed a technology that it claims can reduce Magnetic Resonance Imaging (MRI) scanning times by more than 50%, without changing the equipment. According to the researchers, this efficiency is achieved by placing a layer of metamaterials onto the bed of the scanner, which improves the signal-to-noise ratio.

MRI scanning helps monitor the subtlest of physiological changes in our internal organs. For instance, a timely MRI procedure can detect tissues affected by cancer in the earliest stage of the disease. The possibility of effective MRI diagnostics, however, depends almost entirely on the quality of resulting MRI images.

Scientists from ITMO University, Australian National University, Ioffe Physical-Technical Institute, University Medical Centre Utrecht and Institute of Experimental Medicine RAMS demonstrated that the quality of MRI images could be increased with the aid of metamaterials - artificial periodic structures that can interact with electromagnetic radiation in an extraordinary fashion.

By placing a specially designed metamaterial under the studied object in an MRI scanner it is possible to increase the signal-to-noise ratio in the scanned area. The result of this increase is that either a higher resolution image can be obtained over the same time slot or faster examination can be performed with the same resolution as in an ordinary MRI scanner. In addition, the metamaterial suppresses the electric field, which is responsible for tissue heating - a phenomenon that may compromise the safety of the MRI procedure.

The problem of tissue heating has recently become even more relevant with the arrival of high-field and ultra-high-field MRI scanners in the medical practice. A drive for high-field MRI is mediated by the benefits of better image resolution However, tissue heating becomes substantial at higher fields due to an increase of the radiofrequency energy absorption.

The scientific group managed to entirely avoid tissue heating, at the same time preserving high resolution. The solution does not require any intervention into the hardware of the MRI scanner, but rather represents an inexpensive functional add-on device that can be used with any existing MRI scanner.

"Our metamaterial can be embedded directly into the patient table of any commercially available MRI scanner. However, in the future we see even more potential in the concept of special smart clothing for MRI scanning," says Alexey Slobozhanyuk, researcher at the International Laboratory of Applied Radiophysics at ITMO University. "Stripes of our metamaterial can be sewn in the clothes. The examination of patients, wearing such clothes, would lead to higher resolution MRI images, while the special design will enable a homogeneous enhancement of the signal-to-noise ratio, which does not pose any risk to the patients' health. As a result, with metamaterials you will be able to improve the characteristics of low-field MRI to the extent that their functionality is comparable to high-field MRI."

The possibility of achieving detailed images in a shorter time slot will also make the procedure more comfortable for the patient and in the long view could even reduce queue time in hospitals.

The technology is currently being co-developed by MediWise, a UK based company that specialises in commercialising metamaterials for medical applications.

Tom Austin-Morgan

This material is protected by MA Business copyright
See Terms and Conditions.
One-off usage is permitted but bulk copying is not.
For multiple copies contact the sales team.


Do you have any comments about this article?

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

© MA Business Ltd (a Mark Allen Group Company) 2020